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Executive summary

Medical decision making is becoming ever more difficult. To make the best possible 

decisions, all relevant supporting information - both from evidence and from experience 

- needs to be easily accessible and structured so that it is relevant and accurately 

applicable to the specific patient. We have tools at our disposal to incorporate evidence 

into the medical decision making process. Tools to systematically learn from experience 

- both one’s experience as well as that of colleagues - have not yet come to fruition. We 

need to access, intelligently structure and filter this data for relevance. And we could 

well use some automation. 

This paper presents an algorithm that allows doctors to systematically incorporate 

their individual as well as collective experience into the decision-making process. 

The algorithm was developed and tested on data from Amphia hospital in Breda, The 

Netherlands. This hospital uses the EPIC EHR and has a HIMMS stage 6 classification, 

meaning it meets high standards on administration and use of data. Our algorithm 

consists of three steps:

1. Create a unique fingerprint for every patient. As inputs we used: reason for  

admission, previous diagnoses, medication, lab results, prior surgeries and other 

treatments.

2.  Compare similarities between fingerprints. The algorithm can quickly sort through 

many thousands of other fingerprints to find all highly similar fingerprints.

3. Develop recommendations. For fingerprints that have the highest similarity with 

the subject, we provide feedback based on treatment decisions of these highly 

similar patients. This allows the admitting physician to learn from the experience 

all other physicians have tacitly accumulated by treating highly similar patients.

As a proof-of-concept, we have shown that the fingerprint model can explain and 

predict two clinical outcome measures: 1) length of stay and 2) probability of ICU 

admission. The fingerprint model matches or surpasses the best existing and published 

models. The algorithm can be applied to other outcome measures as well, and can 

provide decision recommendations based on outcome differences within highly similar 

patient groups.
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We see three possible areas of application for the algorithm:

 - Learning on the go: an upgraded version of the algorithm in its current state. We 

focus exclusively on the ‘live’ data recorded daily by care professionals. We do 

not take into account, or attempt to reconcile these data points, with the ‘formal’ 

publications; combining this experience- and evidence data points would be a 

useful next step.

 - The world is a clinical trial: a new way of performing clinical research, that 

can deal with much greater variance in patient characteristics than typical 

randomized controlled clinical trials. Results are applied in practice immediately. 

The predictive power of the model evolves with the population and the care 

regimes. In that sense, it is a ‘self-learning’ model. 

 - Management information: the algorithm can be applied for payors and providers 

alike, for example in the prediction of cost and scheduling.

Bio Amphia
Amphia is one of the largest general hospitals in the Netherlands and one of the 

28 top clinical teaching hospitals. Our core tasks, apart from top medical care, 

are training and research. The hospital has two branches in Breda and one in both 

Etten-Leur and Oosterhout.

Because of its extensive range of specialist medical treatment services and its solid 

position in the region, Amphia has a large care area (over 425,000 inhabitants). 

Among the treatment services, 33 different speciality fi elds are represented. The 

Hospital focuses mainly on oncology, heart, vascular and lung diseases, exercise 

and movement of the body, women, mother & child and healthy ageing.

Over 270 medical specialists, 4,300 members of staff and 340 volunteers work on 

a daily basis to carefully deliver optimal quality care in a safe environment. With 

an eye for our patients and the people that are important to them.

For more information, go to www.amphia.nl
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Introduction

Medical decision making is becoming ever more difficult

The volume of medical research is growing exponentially
1

. It is impossible for a single 

physician to remain abreast of all, or even the most, important developments in their 

field. Not only are the demands of everyday clinical practice too intense to allow much 

time for study: the volume of research and the speed at which it grows is such that 

even full-time devotion is not sufficient to process all research driven information being 

produced. This particularly holds true for all the clinical decision based information 

being generated continuously around the world, which is the subject of this study.

Real life clinical decision support can potentially make medicine better. But at the 

same time, quality of analyses and decision making may be compromised due to 

information overload. With the growing amount of available information, the act 

of making decisions has become more difficult - not less. It is simply impossible to 

rationally weigh and judge all information required to make the best decision for the 

patient without some help and simplification. We need filtering for relevancy; we need 

intelligent comparisons; and we could well do with some automation.

Evidence based decision support systems already exist; we present a novel decision 

support tool that is based on doctors’ experience

To make the best possible decisions, all relevant supporting information - both from 

evidence
2

 and from experience
3

 - needs to be easily accessible and structured so that it 

is relevant and accurately applicable to a specific patient.

We have tools at our disposal to incorporate evidence into the medical decision 

making process. Medical publications are available in central repositories over the 

web and are also searchable, though with some serious limitations (see our study on 

medical literature, “On Benches and Beds”)
4

. Over the past decade, several so-called 

clinical decision support systems (CDSS) have been developed to make the wealth 

of information easily available at the point of decision. The appendix provides more 

background on these systems. CDSS’s typically rely heavily on evidence.

1
 US National Library of Medicine, which keeps track of the number of new Medline / Pubmed indexed papers

2
 By evidence, we mean well documented, hard scientific evidence. This source is especially wealthy, with 12.000 articles being added to Medline every week. This source, however, has a drawback. It describes 

which treatment is best for a comparable group of patients: patients with the same weight, with the exact same diagnosis, with the same clinical history, and combinations of patient characteristics. This exact 

combination of restrictive traits is very unlikely to present itself to the specific patient a doctor is dealing with in real life. That is where experience enters the equation.

3
 Experience is a large category of everything that isn’t, strictly speaking, hard evidence. Rather, it is complementary to it: it is the translation of what is known to be best in a controlled environment to what the 

doctor(s) believes to be the best treatment in an uncertain world. On the one hand, this may be a hospital protocol that specialists have devised to define how they apply science and their own expertise to 

patients. On the other hand, it is the doctors’ individually acquired and exercised experience. This is the collective set of all observations and decisions.

4
 Kruif TM de, Laar L van de, Hagenaars, N. ‘Maat en getal bij de biomedische onderzoeksagenda van Nederland’. Ned Tijdschr Geneeskd. 2017
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In addition to ‘formal’ reviewed or non-reviewed publications, over the past decades, 

health care organizations have amassed a vast amount of electronic data on clinical 

parameters, treatment decisions and outcome. However, such data is typically applicable 

only to specific groups and specific decisions or interventions - and much of what 

doctors do on a day-to-day basis is based on an amalgam of their own knowledge and 

experience, albeit having grown from the evidence. And since every doctor does this 

individually, and presumably in a different manner, there is huge value present in a 

doctor’s mind and sources in which doctors record their decisions, such as EHRs.

Tools to systematically learn from experience - both one’s experience as well as that of 

colleagues - have not yet come to fruition. Certainly, plenty of data is being collected 

- from sources such as electronic health records (EHRs), automated hospital pharmacy 

prescription systems and insurance claim administration. Often, this data has initially 

been collected for special purposes with a narrow focus. Occasionally, it has been 

collected with no clear sense of purpose at all. But as far as we know, such data has not 

yet been used to enable doctors to systematically incorporate learnings from their own 

experience, as well as that from their colleagues, into their decision-making process.

Many of the poster-child techniques of ‘big data’ processing were developed for medical 

and life-science purposes: the challenges of medical image processing and genome 

sequencing have been key drivers of the machine learning revolution. When it comes to 

making decisions for individual patients’ health care, however, clinicians are still mostly 

left to their own preferences. Their access to the collective knowledge is limited by the 

time they can afford to keep up with research or consultation with colleagues, or the 

inclination to do so. This variability in preference is itself a source of contention, one we 

will not be addressing here.

Our point of departure for this study was the premise that a concept that makes the 

collective clinical experience data points constantly being created and recorded around 

the world available at the point-of-care would be useful. A mathematically well-defined 

learning algorithm based on a collective set of experiences could help address, if not 

eliminate, an important source of unwanted variation in medical practice. And it could 

help identify and thus accelerate uptake of best practices from other clinicians.
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This paper presents an algorithm that allows doctors to systematically incorporate 

their individual as well as collective experience into the decision-making process

In this paper, we explore whether the data that hospitals already collect and store 

can be used to improve health care outcomes for patients, and explore ways that this 

information can be leveraged to the benefit of patients, hospital managers, insurance 

companies, and policy makers. We focus exclusively on the ‘live’ data recorded daily by 

care professionals. We do not consider, or attempt to reconcile these data points, with 

the ‘formal’ publications, though undoubtedly combining the two would be a useful 

next step.

Even from a computer science point of view, medical decision making is a particularly 

hard problem: for every patient characteristic, a doctor needs to weigh all possible 

scientific evidence and all data points in one’s own experience. More formally: if there 

are n evidence data points, p patient characteristics and m experience data points, 

the problem is of order O(m*n*p) - i.e., 3-dimensional. Since m, n and p are large and 

additionally, m and n grow very quickly, the problem becomes more and more time 

consuming to solve. In practice all of this is of course undertaken subconsciously by 

the clinician and not explicitly as a brute force mathematical approach. And it is this 

subjectivity that makes it hard to trace the source of observed variations in clinical 

practice, let alone judge the validity of the observed variations.

We present an algorithm which analyzes a collective set of experiences by reducing two 

dimensions (patient characteristics and experience) to a single-value, thereby greatly 

reducing the complexity of inferring conclusions from all relevant data points. This 

algorithm extracts, analyzes and re-presents the information in medical practice as a 

support for the individual medical decision making. Hence the title of this study: ‘The 

World is a Clinical Trial’. We take the view in this study that every single clinical decision 

doctors make every day is a new data point, that can be reviewed and considered for 

relevance in a new situation. In this sense the clinical world as we know it, is itself an 

ongoing trial, that we can leverage to improve medical outcomes. To the best of our 

knowledge, this is the first model to aid decision making based on experience. The 

third dimension (evidence) is not explicitly included in this algorithm. In the discussion 

section, we describe how evidence can also be taken into account explicitly; this is a 

relatively easy step.
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Our aim is not to replace the individual doctor’s decision making with an algorithm - the 

vagaries of medical practice require human intervention. Our aim is much more modest 

- we propose to support human decision making with an algorithm that systematically 

accounts for how other doctors decide in similar conditions.

Methodology 

Using fingerprints to incorporate experience into decision 
making

Fingerprints - the concept in three steps

We hypothesized that based on data from a good Electronic Health Record (EHR), in 

which data is organized in a structured fashion, it is possible to create highly distinctive 

‘fingerprints’ for each patient. A patient specific ‘fingerprint’ is composed of clinical 

variables such as lab values, current and past reasons for admission, previous therapeutic 

interventions, etc. Moreover, fingerprints could contain an element of time-decay: 

abnormal lab values recorded last week could weigh more strongly in the fingerprint 

than those recorded a year ago. For this study we focused on unique fingerprints for 

elderly patients (70+) at the time of admission.

Once fingerprints were created for individual patients at each time of admission, we 

built an algorithm that can quickly sort through many thousands of other fingerprints 

to find all highly similar fingerprints - akin to such lab techniques as gel electrophoresis 

which is used to, for example, analyze DNA patterns (see figure 1 below).

Finally, once a group of highly similar patients is identified, we can determine a 

‘recommendation’ for the current patient based on the average values observed in the 

comparison group. We could, for example, predict length-of-stay, determine the chance 

of ICU admission or give a recommendation on which, if any, antibiotic to prescribe. 

This allows the admitting physician to learn from the experience all other physicians 

have tacitly accumulated by treating highly similar patients.

Figure 1 shows an overview of the concept based on which this study was built.
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FIGURE 1:

The concept of ‘fingerprinting’

More than simply proposing a theoretical concept, the purpose of this study was to 

build a proof-of-concept model for the fingerprinting algorithm, and to study how 

well it can predict certain clinical outcomes or recommendation therapeutic choices. 

The model should be fast enough so that it works in real-time within an actual EHR 

and thus function as a full-blown CDS that builds on all experience contained in its 

database.

Constraints / limitations to this study

As we will describe below, our focus was on developing an algorithm that could put this 

idea to practice. We wished to test, to the extreme, how much predictive information 

is embedded in the data itself. As such, we put a few, admittedly artificial, constraints 

on our design - which would of course not apply in real life implementations of this 

algorithm (see discussion section for more detail):

• Let the ‘experience’ data speak for itself. The idea focuses on ‘experience’ data 

points and does not include any ‘evidence’ based validation. We wanted to see 

just how much relevant information is contained in raw data, and add as little 

clinical interpretation as possible (combining evidence or protocols is one way to 

enrich the raw EHR data). 

• As such, variables in fingerprints are not weighted in any intelligent way. Certainly, 

in real-world applications of this idea, it is conceivable that intelligent weighting 

(based on clinical evidence, or machine learning) would add considerably to the 

predictive power of the model.

• Limit data manipulation to an absolute minimum. We wanted the model to work 

with raw EHR data as closely as possible, so that the model could be directly 

implemented in actual EHRs without building separate datasets. For example, we 
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chose not to create artificial value groupings for lab values, but rather used their 

absolute values. The only concession we made on this point was that we made 

some minor manipulations to open text fields (such as ‘reason for admission’) in 

order to categorize them, which can be done quickly on-the-fly. 

Data set
To perform this study, we were given access to an anonymized extract of EHR data 

from Amphia hospital in Breda, The Netherlands. Amphia hospital uses the Epic EHR 

system, and was one of the first Dutch hospitals to receive HIMSS Stage 6 qualification 

meaning its EHR and clinical processes meet very high, externally audited standards. 

As such, it formed a very suitable basis on which to build this proof-of-concept model.

The contents of the dataset available for this study can be summarized as follows: 

• all admissions of patients age 70+ from January 2014 to April 2015

• all clinical data points stored in the EHR from the following six categories: 

o reason for admission (current and past) - 294 unique values

o previous diagnoses - 1,474 unique values

o prior surgeries - 644 unique values

o prior other clinical interventions - 215 unique values

o lab values - 254 unique values

o medication (by ATC5
5

 code) - 377 unique values

• historical data from January 2013 onwards, so that for all admissions there is at 

least 1 year of prior data available in the dataset

In total, the dataset contains information on 35,894 admissions. Table 1 summarizes 

the demographic characteristics of the patients in the dataset.

5 
ATC5: first 5 digits of the Anatomical Chemical (ATC) code, according to the classification maintained by the World Health Organization (WHO). Represents chemical/therapeutic/pharmacological subgroup
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Total Test set Reference set

Total # of admissions 35,894 6,988 28,906

Total # of unique patients 18,927 3,785 15,142

Age categories at admission

-70-74 year 28% 26% 29%

-75-79 30% 32% 29%

-80-84 23% 23% 23%

-85-89 13% 13% 13%

-90+ 6% 6% 6%

Percentage female 52.5% 52.8% 52.4%

Table 1: characteristics of the dataset

Test set vs. reference set

To develop and validate the model, and to eliminate the risk of prediction bias, we 

created a test and reference set of patients. The test set of patients represent a group 

of patients admitted to the hospital for whom we want to make predictions, and a 

reference set of patients are those whose data points can be used to make predictions 

for the test set. These sets were constructed as follows:

• The test set contains 20% of all unique patients from the dataset. For these 

patients, we selected all admissions in the 2nd half of 2014. This selection 

ensured that 1) the tests we apply would be ‘realistic’, in that we would only draw 

conclusions from analyses of historic data in the reference set, and 2) there would 

be enough data in the dataset to accurately measure such outcome variables as 

length-of-stay. In total, the test set contains data on 6,988 admissions for 3,785 

unique patients.

• The reference set contains the remaining 80% of all unique patients from the 

dataset. For these patients, we selected all admissions in the 1st half of 2014. In 

total, the reference set contains data on 28,906 admissions for 15,142 unique 

patients.

Table 1 summarizes the contents of both datasets.
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Fingerprints by category

For every unique admission, we created a fingerprint for each of the six data categories 

available to us. To do so, we used the following procedure:

• Encode all variables

o Categorical variables were converted to Boolean variables. For example, for 

the variable ‘previous diagnoses’, all possible diagnoses were converted to 

distinct variables, and each variable set to either 0 (diagnosis not present) 

or 1 (diagnosis present). This applies to all variables except lab values, which 

are numerical. For medication, we only used data on which medication a 

patient used, not in what quantity, frequency or dosage.

o Lab values were converted to a ‘distance from normal’. For all lab values, a 

‘normal range’ is recorded in the EHR based on the population and particular 

lab conditions at the time of measurement.  ‘Distance from normal’ for the 

purpose of this study was then defined such that a value of 0 represents 

the precise median between the lower and upper value of the normal 

range, a value of -1 represents the lower value of the normal range, and +1 

represents the higher value of the normal range.

• Time code variables

o All variables were linearly weighted in time such that:

 Values up to 1 year prior to admission date receive a weight of 0.

 Values at date of admission receive a weight of 1.

 All remaining values receive a weight between 0 and 1, with the weight 

linearly decaying from 1 at admission to 0 one year post admission. 

 Create vector for each of six categories: For each of six categories, we 

calculated a multidimensional vector based on all the values within that 

category. This vector is the mathematical representation of a ‘fingerprint’.

Fingerprint density

It is possible for a patient to have a fingerprint without any previous data points. Of 

course, such a fingerprint is much less distinctive than a fingerprint for an admission 

where we have many data points. Therefore, we wanted to create a measure for how 

much information is contained in each fingerprint. We call this measure the ‘density’ of 

a fingerprint. To create this measure, we used the following procedure for each of the 

six information categories:
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• Determine maximum vector length, defined as the length of the hypothetical 

vector in which all variables are set to the maximum observed value

• Density = (observed vector length) divided by (maximum vector length)

As can be inferred from the above methodology, density values for each category can 

range from 0 to 1, where 0 is minimum information density and 1 equals maximum 

information density. Figure 2 provides frequency distribution graphs for densities 

within each of the six information categories.

FIGURE 2: 

Distribution of densities and similarities for individual fingerprint com-

ponents (Note: for an explanation of ‘manhatta n distance’, please refer 

to the next section on similarity score calculations)

To determine an overall density for an admission, i.e. based on all six data categories 

combined, we add the densities of each of the six categories. Figure 3 provides a 

frequency distribution graph for overall fingerprint densities of all 35,894 admissions 

available in the dataset.
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FIGURE 3:

Distribution of overall fingerprint densities

Similarity

We can determine similarities between each of the 6,988 admissions in the test set and 

each of the 28,906 admissions in the reference set, for a total of 27.691.550 pair-wise 

comparisons. Figure 4 provides a graphical representation of the process of comparing 

fingerprints between the test and reference sets.

FIGURE 4:

Graphical representation of the process of fingerprint comparison

Similarities are calculated for each of the 6 information categories in the following 

fashion:

• Determine the ‘Manhattan distance’ between vector of the test subject and 

vector of the reference subject. Manhattan distance is a very simple method 
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of calculating distances between 2 points in a multidimensional vector system. 

The method’s name reveals how it works: it can be used to determine how many 

‘blocks’ one must travel to get from, e.g., 1st avenue and 21st street, to 2nd 

avenue and 23rd street in Manhattan. In this case, the Manhattan distance would 

be 3. While in the case of Manhattan, there are only 2 dimensions (avenues and 

streets), the calculation easily expands to vectors of many dimensions.

• Divide each distance by the maximum potential distance for that information 

category - i.e., the distance between a vector where all values are 1 and a vector 

where all values are 0. This division creates a distance that is always between 0 

and 1, where 1 represents maximum potential distance and 0 represents 100% 

equality.

• We now have a distance between 2 vectors, but we find similarities conceptually 

more intuitive to work with. We convert using the following formula: similarity 

= 1.0 - distance. Now, a similarity value of 1 means 100% equality between 2 

vectors.

Figure 2 above displays, for each data category, frequency distributions of similarities 

between 6,988 test-set admissions and 28,906 reference-set admissions, for a total of 

27.691.550 pairs.

To calculate similarities between 2 admissions based on multiple data categories (e.g., 

based on both prior diagnoses and lab values), we multiply similarities for each of the 

categories. For example:

• 100% similarity on prior diagnoses and 100% similarity on lab values translates 

to an aggregate similarity score of 1 x 1 = 1

• 100% similarity on prior diagnoses and 50% similarity on lab values translates 

to an aggregate similarity score of 1 x 0.5 = 0.5

• 50% similarity on prior diagnoses and 50% similarity on lab values translates to 

an aggregate similarity score of 0.5 x 0.5 = 0.25

Note that in theory, this method puts a relatively large penalty on dissimilarity. Two 

patients who are completely similar on 5 categories but completely dissimilar on 1 

category would receive a similarity score of 0. In practice, however, this does not occur 

because 0 values in the fingerprint are also information points. For example, to be 100% 

dissimilar, a test patient would have to have undergone all possible surgical operations 

that a reference patient has not undergone, and vice versa.
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Note also that the choice to first calculate similarities per category with an outcome 

between 0 and 1 was a design choice made to ensure that categories for which the 

vector consists of many components do not dominate the similarity calculation. As we 

explain in more detail in the discussion section, these design choices could perhaps be 

improved for real-world implementations.

 

FIGURE 5: 

Distribution of overall similarities between all patient pairs

Figure 5 displays aggregate similarities for all 27.691.550 pairs based on all six data 

categories.

Output variables for comparison

At this point, we have 6 separate fingerprints for each patient, namely, one for each of 

the six variable categories and a combined fingerprint for all 6 categories per patient. 

We also have for each pair of patients a similarity score: again, a combined score as 

well as a similarity score per each category. To validate the developed approach, we 

then used the test patient set as a proxy for patients that present themselves to the 

hospital - these are the patients that form our ‘trial population’. For this test set we 

are interested in making recommendations on treatment advice and outcomes based 

on the similarity in fingerprints predictive system we have developed. And we have 

for this test set of patients the actual choices made by the clinicians as a measure to 

benchmark the quality of our predictions
6

. We use the reference set as a proxy for data 

on which predictions or recommendations would be based. 

To test how much clinically relevant information can be obtained from fingerprint 

comparison, we analyzed two outcome variables:

• Length of stay: the number of days between date of admission and date of 

discharge. 
6 

Here we should draw attention to a paradox in our model: we are using the actual choices made by the clinicians as the benchmark to gauge the success of our algorithm and yet the aim of our algorithm is to 

improve the quality of these very choices. As we move ahead with further development and refining it is conceivable that expert vetting of these choices to make a ‘best practice’ learning set may be useful. 

But in the proposed application this is not necessary. We are using the test set merely as a check on the validity of this approach. The application does not purport to predict a ‘right’ answer but to make 

available choices made by others in the most similar and thus presumably relevant cases
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• IC admission: a Boolean indicating whether a patient was admitted to the ICU 

during this admission

The method of comparison we used for these variables is as follows:

• First, we analyze the fingerprint for a random test subject

• Then, we identify all reference subjects for whom the similarity scores are higher 

than a certain threshold. Of course, we do not know a prior what the threshold 

should be for optimal predictions. Therefore, we tested different thresholds - 

sensitivity tests. 

• Lastly, we obtain the average outcome value in the ‘best match’ reference group 

for the test subject under analyses. 

Findings: The fingerprint model in 
action

If the model works as hypothesized, we should be able to draw relevant conclusions 

on clinical outcomes based solely on the fingerprint of the individual being admitted 

to the hospital. This is done as described in the previous chapter, by comparing that 

fingerprint to other fingerprints in the database and interpreting the characteristics 

of patients with highly similar fingerprints. Furthermore, the predictive power of the 

model should improve as we set higher similarity thresholds or, in other words, limit 

comparisons to sets with higher similarity.

In this chapter, we will explore how well the fingerprint model explains two clinical 

outcome measures: 1) length of stay and 2) probability of ICU admission. We believe 

that other outcomes can be predicted as well. We discuss other options and areas of 

application in the discussion section.

Length of stay

We have attempted to predict the precise length of stay based on an individuals’ 

fingerprint data. Prediction of length of stay is interesting because it facilitates 

management of bed capacity, it may aid in optimizing use of short-term stay wards 

and it may help to better prepare and organize the transfer to the patients home or a 

nursing home (for example, special beds or mobility aids can be requested in preparation 

of the discharge of patients).

For this analysis, we calculated the average length of stay amongst matching patients 
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from the reference group. We used the difference between ‘predicted length of stay’ 

and ‘actual length of stay’ as the outcome variable. A difference of 0 means that the 

prediction precisely matches the actual length of stay, and is therefore the best possible 

model result.

Since we do not know ‘optimal’ levels for similarity, nor do we know what is the 

minimum fingerprint density, we ran the model at various thresholds for both variables. 

Figure 6 shows how well the fingerprint model predicts length of stay at different 

thresholds for similarity scores, and at different levels for minimum fingerprint density.

 

FIGURE 6:

Difference between predicted and actual length of stay (LOS) at diffe-

rent thresholds for similarity and density

In this analysis, only patients who meet the minimum fingerprint density level and 

similarity levels are included. Therefore, the results tell us how well the model can 

predict the length of stay, provided the threshold values are met. 

Overall, we can draw three important conclusions:

• As expected, as we set higher thresholds for similarity scores, meaning that the 

reference group becomes more similar to the test subject, the predictive power 

improves significantly

• At very high thresholds (> 0.98 similarity score), the model functions extremely 

well: it can predict length of stay on average within less than 1 day from the 

actual length of stay.

• The predictive power of the model declines slightly as we become more restrictive 
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on the minimum fingerprint density of the test subject, meaning that we require 

more data points for the subject. One would perhaps expect the opposite since 

higher density implies more comprehensive match with the reference set of 

multiple vectors. However, here we must consider the second effect of increasing 

thresholds: the sample size decreases with increasing match requirement. As the 

threshold fingerprint density increases the number of reference subjects declines 

rapidly. Requirements of matching on more data points implies fewer patients 

are included in the analysis, and it becomes increasingly difficult to find matches 

at any given similarity threshold. For example, at a minimum similarity threshold 

of 0.98, we find an average of 371 matches if we set the minimum fingerprint 

density at 0.01. In contrast, we find only an average of 4 matches if we set 

minimum density at 0.04. We expect this effect can be reduced quite easily by 

using larger datasets.

We also looked at length of stay prediction from a different perspective. We wanted to 

know for what fraction of patients the model can predict the length of stay (in number 

of days) precisely correct. 

As in the previous analysis, we ran the model at different levels for minimum similarity 

and minimum fingerprint density. Figure 7 shows the results of these analyses.

FIGURE 7: 

Percentage of precisely correct length-of-stay predictions (LOS) at dif-

ferent similarity and density thresholds

Here also, we see that predictive power of the model becomes better as we set higher 
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thresholds for similarity. However, we also see that the quality of the model diminishes 

at very high similarity thresholds (> 0.96). This, again, is likely due to the fact that 

we find ever fewer matches at such high similarity levels. We also see that overall 

usefulness of the model diminishes quickly as we increase the fingerprint density 

thresholds. This is because fewer patients are included in the analysis, so that the group 

for which the model can make no prediction also grows rapidly. Figure 8 shows a more 

detailed view of the relationship between density and similarity thresholds, number of 

patients meeting those thresholds and quality of LOS prediction.

Overall, the results are very encouraging. If we choose the right thresholds for similarity 

and density, we find that the model can predict length of stay precisely correct for up 

to 42% of patients and predict length of stay within a 13% margin of error on the basis 

of the clinical information available at the point of admission alone within a single 

hospital EHR without recourse to any other literature or data. Since such models can 

be directly linked to the available EHR software at the doctor’s desk, they can be quickly 

integrated into clinical practice helping hospitals manage their clinical capacity better.

FIGURE 8:

Relationship between density and similarity thresholds, number of 

 wpatients and quality of LOS prediction

To put these results in perspective, we searched medical literature for other models that 

predict length of stay. Such models typically focus on particular subgroups, for example 

primary total knee replacement (Carter et al.
7

) or cardiac patients (Hachesu et al.
8

). Such 

subgroups are likely to have a more homogenous distribution for length of stay, making 

it somewhat easier to predict length of stay.

7
 Carter et al., Predicting length of stay from an electronic patient record system: a primary total knee replacement example. BMC Med. Informatics and Decision Making 2014 14:26

8
 Hachesu et al., Use of Data Mining Techniques to Determine and Predict Length of Stay of Cardiac Patients. Health Inform. Res. 2013 Jun; 19(2): 121-129
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Moreover, all of these models stratify the outcome variable. That is to say, they do 

not predict a precise number of days, but rather predict an outcome category (e.g.: 

0-1 days, 2-4 days, 5-7 days and longer).  Of course, a category prediction may also 

be useful enough for most applications. If we also stratify our model predictions the 

quality of the output will likely improve. 

As such, it is difficult to compare our results to many other studies. However, our 

results do appear to compare very favorably. Dent et al.
9

 found that they could predict 

the correct length of stay category for up to 35% of emergency department patients. 

In the study by Carter et al., the model predicts length of stay within 1 day accuracy 

in only ~30% of cases. In our model, we can predict length of stay for up to 43% of 

patients precisely correct.

Intensive Care admission

As a second proof of concept we used the fingerprint model to predict admission to 

the Intensive Care Unit (ICU) at any point during the admission. Such knowledge at the 

time of admission to the hospital would provide the physician the chance to reroute 

the patient to other hospitals if the local ICU does not have sufficient capacity - even 

if the patient is presently not an obvious ICU candidate. It would also aide hospital 

administrators in capacity management. Finally, ICU admission probability can serve 

as a proxy for complexity or risk and help the care providers adjust their treatment to 

meet the predicted risk.

We used the fraction of patients in the reference group that was admitted to the ICU 

at any point during their admission as the target variable. A value of 0 therefore means 

that 0% of the reference group was admitted to the ICU, a value of 0.5 means that 50% 

of the reference group was admitted to the ICU, and so forth.

Of course, we would like to translate such a percentage into a straight ‘yes’ or ‘no’ 

prediction. However, it is impossible to set an ‘optimum’ threshold. The higher it is set, 

the more likely we will find true positives, but we will also find more false positives. To 

deal with this problem, we used the receiver operating characteristic (ROC) method to 

analyze the quality of the outcome variable. 

9
  Dent et al. Can medical admission and length of stay be accurately predicted by emergency staff, patients or relatives? Aust Health Rev. 2007 Nov;31(4):633-41.
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This technique does not require us to set a threshold value for the outcome variable, 

but rather, it creates a curve with sensitivity (probability of finding a true positive) on 

the y axis, and 1-specificity (i.e., probability that the test is false positive) on the x axis. 

It does so at various threshold levels.

A test that is extremely poor will lead to a 45 degrees straight-line ROC curve. The 

more the curve bends towards the upper left corner, the better the test discriminates 

true positives from false positives. The overall quality of the test can be measured by 

calculating the area under the curve (AUC). An AUC of 0.5 means the test is fully non-

discriminatory. While an (hypothetical) AUC of 1.0 corresponds to a test that is perfectly 

discriminatory.

FIGURE 9: 

ROC curves for predicting probability of ICU admissions using the finger-

print model

As in other analyses, we ran the model at various thresholds for similarity scores and 

fingerprint densities. However, to simplify outputs we do not show all results here, but 

only show the best results, i.e. at a similarity score threshold of 0.96, and no minimum 

value for fingerprint density. We ran the model first for all admissions to the hospital, 

and subsequently also for the subgroup of patients admitted via the emergency room 

(ER). The results are shown in figure 9.

As can be seen in the graph, the predictive ICU admission rate model for all patients 

functions remarkably well. At the best threshold value for similarity and density, the 

test can predict ~60% of ICU admissions correctly, if we accept a false positive rate of 

~15% (versus a random-test prediction baseline of 15%
10

). The AUC is 0.71, based on 

which we conclude that the test is fairly discriminatory.
10

 For example, a computerized prediction that churns out, at random, ‘yes’ in 15% of cases, and ‘no’ in 85% of cases. Such a test would meet the same false positive rate of ~15%. A 50-50 random test would 

predict 50% of cases correctly, but would also have a false positive rate of 50%.
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Predicting ICU admission for ER patients is much more difficult. This is because while in 

planned admissions (e.g. for planned surgeries), ICU admission is part of the planning 

process, for ER patients the probability of ICU admission is much more random. We also 

see this in our analyses: at best, the test can predict ~38% of ICU admissions, if we 

accept a false positive rate of ~15%. The AUC for this curve is 0.56.

Overall, these results compare relatively well to other predictive models, although there 

are better models out there. For example, both Gagné et al.
11

 and Loekito et al.
12

 found 

AUCs slightly above 0.80 for their models. We would like to emphasize that our results 

are based solely on relatively naïve analysis of data points readily available in an EHR, 

without adding any medical knowledge or evidence-based decision support. We are 

convinced that adding more data points (e.g. by linking primary care data, pathology 

outcomes, radiology results, including historical data beyond one year, considering 

diagnoses based biases, etc.) and adding intelligence (e.g., have a physician input their 

own probability, and using that variable as one of the data points in the fingerprint 

model) could make the model more precise. These first results at the least encourage 

a follow-up on this methodology. But most importantly, the confirm that the wealth 

of experience data that is embedded within an EHR can be used to draw meaningful 

conclusions - even without applying any prior knowledge or expertise.

Outcome-based clinical decision support

Having established that the fingerprint model can draw meaningful conclusions on 

outcome based on the wealth of data that is collected in an EHR, we explored how the 

model might be used as a tool to support clinical decision making. 

We hypothesized that the fingerprint model can be used to determine whether a 

particular clinical intervention has a meaningful impact on outcome for highly similar 

patients. If so, the model can either suggest treatment options based on fingerprint 

directly, or it can flag patients for whom recommendations from the model were not 

followed, e.g. for potential discussion with colleagues in grand rounds. Please refer to 

the section “Areas of application” for a more in-depth discussion of how the fingerprint 

can conceptually support clinical decision making.

11
 Gagné M et al. Performance of ICD-based injury severity measures used to predict in-hospital mortality and intensive care admission among traumatic brain-injured patients. J Trauma Acute Care Surg. 2016 

Nov 30. 

12
 Loekito E et al. Common laboratory tests predict imminent medical emergency team calls, intensive care unit admission or death in emergency department patients. Emerg Med Australas. 2013 Apr;25(2):132-9.
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To test how this might work in practice, we considered a hypothetical situation where 

surgeons admitting elderly patients through the regular admission process (i.e., not 

through the emergency room) would like to evaluate whether administering oral 

antibiotics at time of admission contributes positively or negatively to length of stay. 

Of course, such an analysis might be more interesting if we would consider specific 

kinds of antibiotics used as prophylaxis instead of a binary yes-or-no, and if we were to 

use more interesting outcome data, such as probability of infection during admission, 

overall survival, etc. Since such data were not available to us, we had to keep to a 

simpler model of which the outcomes themselves are perhaps not all that insightful. 

However, for our specific intent - to test how the fingerprint model might be put to use 

to support clinical decision making - the process of this particular analysis was more 

important than the outcome.

Analytically, the translation of this situation to the fingerprint model works as follows:

• We selected all test patients who were admitted by the surgical department, and 

who were admitted through the regular admission process. For the purpose of 

this analysis, the minimum fingerprint density was set at 0.001. A total of 94 

patients were thus identified in the test set

• For each selected test patient, we identified a reference group with highly similar 

fingerprints. For the purpose of this analysis, the minimum similarity level was 

set at 0.96. 

• We then separated the reference group for each test patient into 2 subgroups: 1 

subgroup of reference patients who did receive antibiotics upon admission, and 

1 subgroup who did not receive antibiotics upon admission.

• We compared the outcome (i.e., length of stay) for the reference group with 

antibiotics to that of the group without antibiotics, with the hypothesis that 

prophylactic antibiotics may, for certain patients, reduce the length of stay 

because they reduce the probability of post-operative infection. For the purposes 

of this proof of concept, we set an arbitrary threshold - if there is a difference 

in outcome of more than factor 1.5, the model provides a recommendation (in a 

more elaborate model, one might perform statistical testing between the groups 

instead of choosing an arbitrary factor). Otherwise, no recommendation is given.

Figure 10 shows how often each type of recommendation is given vs. how often oral 

antibiotics were actually administered upon admission. Interestingly, oral antibiotics 
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were almost never given in this test group of patients. For the one patient who did 

receive antibiotics, the model would have suggested not to do so. Upon further 

inspection, we found that for this patient the reason for admission was entered as 

‘unknown’. Review of activities performed on this patient suggest the patient was 

admitted for arterial occlusion issues with the lower extremity (this is also a likely 

explanation for why antibiotics were administered).

However, based on the outcome measure of length of stay, the model suggested 

considering antibiotics for 7 patients for whom they were not actually given. Upon 

further review of these 7 patients, we found that the reason for admission for 6 of them 

was surgery for rectal carcinoma (for 1 patient, it was lung cancer). 

At this point, the model has flagged several patients with rectal carcinoma for whom the 

use of antibiotics might be considered, but where we know in hindsight that antibiotics 

were not given. The findings from this analysis, together with a more in-depth review 

of these patients’ records and literature, might form an excellent basis for discussion at 

grand rounds. Indeed, a recent Cochrane systematic review concluded that the benefit 

of routine use of oral antibiotics is at present uncertain
13

. 

FIGURE 10: 

Use of the fingerprint model for recommendation on use of antibiotics in 

surgical patients

The analytical steps demonstrated here can in principle be applied to any combination 

13
 http://www.cochrane.org/CD001181/COLOCA_antibiotics-administered-patients-prior-colorectal-surgery
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of clinical intervention and outcome measure. It can also easily be expanded to, 

say, compare the clinical decisions taken by different colleagues. Of course, in many 

situations, the insights derived from the model may not yet be meaningful without 

further detailed study and professional evaluation. But it is shown here that the model 

can at the very least potentially identify very specific subgroups of patients for whom it 

might be beneficial to discuss experiences among colleagues, perform a more detailed 

study, compare findings to evidence in literature, etc.

Summary of results

For the 2 fields of applications tested, length of stay and ICU admission, we have 

shown that the fingerprint model we have developed based on EHR data can already 

match or even surpass the best existing and published models. The fingerprint model, 

however, has other important practical benefits. Existing models typically use either a 

formula or a decision rule derived from multivariate regression analysis of a certain 

population. That means that applicability to other populations is uncertain. Our model 

uses ‘live’ data from the local EHR, so that it’s predictive powers do not rely on certain 

pre-calculated parameters but on characteristics of the recent and evolving local 

population. The predictive power of the model evolves with the population and the care 

regimes. In that sense, it is a ‘self-learning’ model. 

Furthermore, the fingerprint model can handle an unlimited amount of data points, 

while multivariate regression models are limited in the number of variables that can 

be incorporated.

We have, on purpose, not attempted to predict outcomes such as survival or quality 

of life. That is first because that data is not available in the dataset we have, but also 

because we wanted to first validate relatively non-controversial outcome measures to 

test the predictive capabilities. In the last analysis described above, we have shown how, 

when linked with outcome measures, one might use the fingerprint model to provide 

clinical decision support that leverages the wealth of available EHR data and applies it 

to the individual patient. 

There have been many attempts at extracting predictive information from EHRs using 

big data techniques, and it was not our intent to prove that this model is better. 

However, as far as we know, there are no live working algorithms based on experience 



27

such as this one operating in EHRs today, and we do believe the fingerprint model is 

one of the first directly applicable models that has proven predictive power (for the two 

tested applications) and can readily and easily be implemented into any EHR system. 

Moreover, the model has the potential to achieve even greater accuracy with some 

minor improvements, which we will discuss more in-depth in the following chapter. 

Improvements to the model

The previous chapters have described the background of this study, the design of the 

model and proof of its predictive capabilities. Before we expatiate how we can use 

this model in real-world applications, we will use this chapter to describe routes for 

improving the model, both from a conceptual as well as from a technical perspective.

Conceptual caveats to the model

Finding the synergies between doctors and computers - In the introduction we 

mentioned that doctors are largely reluctant to apply available information and big-

data processing in their day-to-day work. This reluctance to admit automated data 

analysis into the consultation room can, in part, be traced to understandable concerns 

regarding the protection of individual patients’ privacy. Another strong concern within 

the clinical community is that automated data analysis cannot and should not replace 

a balanced decision making process informed by years of training and experience. We 

agree that this is so. In fact, we believe data analysis techniques such as outlined in 

this paper should aim to supplement rather than substitute the existing, mature, highly 

developed and indeed very successful clinical decision making process. There are ways, 

in our view, that the human senses and brain function that cannot as yet, or perhaps 

even ever, be replicated by algorithms and computers.

Science is not democracy - The model essentially works based on one axiom: what 

happens most often is relevant and should be considered. The concept does not judge, 

does not provide any sort of verdict about which option is best; it merely provides the 

treatment options that are most frequent given the set of known patient characteristics. 

This in itself need not have any definite implication on treatment choices; well-

informed and well-judging doctors may decide to omit information as often as they 

believe is in the best interest of their patients. However, there is a certain risk that 

prompting ‘average values’ could lead to less variation in treatment and the distribution 
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degenerates to the mean. In other words, this effect may eradicate beneficial practice 

variation and hinder the search for better methods. There is a risk of enforcing majority 

rule rather than best and evolving practice.

For example: a patient with high cholesterol needs to be treated with a statin; a 

medication that lowers cholesterol. Imagine that there are three options: A, B and C. 

Their respective frequency is 60%, 30% and 10%. Our tool will give this information to 

the doctor, who may conclude that A is the best choice since it is most conventional. 

However, it is very well possible that C is a relative newcomer with far superior results. 

In an optimal scenario, the algorithm also incorporates predicted outcome. For example, 

in the statin case, for all options the expected quality of life, probability of adverse 

outcomes or survival rates in general could be reported. However, in any evolving field 

of application, and medical science is constantly innovative, there is always a time lag 

and past outcomes need to be judged in light of the evolving curve rather than the 

historical practices. 

Technical improvement of the concept

Our goal was to develop a first feedback loop based on readily available ‘experience’ 

information. If the final vision is a modern full electric car, by analogy we now have a 

Flintstones car. But it’s an artefact that can be used in everyday live, and is much faster 

than walking. The basis - the fingerprint algorithm - is the heart of our vision and 

can be extended and improved in various ways. Below, we outline several avenues for 

technical improvements of the first version we currently have.

First, we can introduce intelligent weighting to the different variables. Currently, 

we employ six different kinds of variables in the fingerprint: reason of admission, 

diagnosis, lab diagnostics, surgeries, other activities performed on patient and 

medication upon admission. The weights of these categories, as well as the values 

within these categories, are determined in a naïve way. That is, they are equal. This 

means for example, that the diagnosis ‘diabetes’ has the same weight as the result of 

an ALAT clinical chemistry test. The decay of weightings over time was also set at 1 

year decreasing linearly, while the optimal weights may very well differ by variable. This 

naïve weighting can be made more intelligent by including current medical knowledge 

to tune and tweak the weight so that the suggestions of our model become more 

meaningful and insightful. Alternatively, we could allow users of the tool that is based 
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on this model to indicate which predictors were relevant every time they use the tool. 

Machine learning algorithms can even be applied that extract which information leads 

to different medical decisions and continually improve the fingerprints.

Second, we can use readily available medical evidence in the fingerprints. For example, 

we know that methotrexate is used for inflammatory diseases such as rheumatoid 

arthritis, psoriasis and Crohn’s disease. And it is not used for any other diseases. If we 

were to use our model for medication advice, the current iteration, though unlikely, 

might suggest the use of methotrexate for patients that have exactly similar surgeries, 

lab results, and reason of admission to the hospital as 25 other patients, but who 

do not have any of these diseases. Applying this common medical knowledge to the 

algorithm may exclude the suggestion of methotrexate for a patient without one of 

these diagnoses. Applying well known medical evidence to the fingerprints as rules or 

constraints will omit such issues. 

Third, we can improve the significance of the suggestions of the algorithm by improving 

the cut-off points for the required density and similarity scores of the algorithm. For 

example, we can allow the algorithm to learn, by itself, what weights and cut-off points 

best suit the problem at hand. This could be done by linking the output of the algorithm 

with the actual decision of the doctor. With this link, the algorithm can observe what 

kind of information leads to which decisions. And optimize its weights and cut-off 

points given these new insights. 

Areas of application

As we seek to make the world a better place, this chapter deals with perspectives about 

practical ways to bring our thinking forward and apply it in practice to truly have 

impact on clinical decision making.

Overall, we see three possible avenues of application for this model. These avenues and 

the concrete possibilities are outlined in figure 10:

 - Learning on the go: diagnosis and treatment recommendations for healthcare 

professionals, based on clinical decisions made by colleagues for highly similar 

patients

 - The world is a clinical trial: a new way of performing clinical research, that 

can deal with much greater variance in patient characteristics than typical 
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randomized controlled clinical trials and where results are applied in practice 

immediately

 - Management information: for insurance companies and healthcare institutions

FIGURE 11: 

Avenues of application for the fingerprint model

Point-of-care insights

The fingerprint model readily lends itself to supporting a great variety of clinical 

decisions, both for treatment and diagnosis. Especially when combined with clinically 

relevant outcome measures, such as survival or quality of life, it could provide significant 

decision making support to physicians.

As you may recall from the introduction chapter, clinical decision making is a 

3-dimensional problem. If there are n evidence data points, p patient characteristics 

and m experience data points, the problem is of order O(m*n*p). The fingerprint model 

reduces this 3-dimensional problem to a 1-dimensional problem (the system only needs 

to compare 1 fingerprint to all other fingerprints), and therefore greatly reduces the 

complexity of inferring conclusions from all relevant data points. 

Thus, it is very well suited for clinical decisions where individual characteristics are 

likely to have a great influence on outcome, or where particular predictive variables 

are simply not yet known. We will here describe 2 contexts in which we think the 

model could be very useful, although there is of course an unlimited amount of other 

potential applications.
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Medication advice for the elderly

Polypharmacy is the largest clinical problem in the elderly population. On average, 

73% of people > 65 years of age use more than 3 separate drugs per day
14

. Elderly 

patients are also more susceptible to side effects and drug interactions. Admission to 

a hospital provides an excellent opportunity for a physician to review the medication 

list, but - apart from drug-drug interactions for which good databases exist - such a 

medication review is complicated and time consuming. Our model can be used to build 

an add-on to any EHR that provides instant medication advice to the physician based 

on what medication similar patients receive. We have actually built a proof-of-concept 

for such a tool, to show that it is 1) feasible and 2) quick enough to be usable. Figure 

12 shows a Dutch version of this proof-of-concept tool. It provides an overview of 

the patient characteristics, such as reason for admission, lab values, etc. It also shows 

the medication on admission as entered by the admitting physician. The ‘intelligence’ 

added by the fingerprint model is revealed by the coloring of certain medications: a 

red highlight means the patients in the reference group typically do not receive that 

particular drug, while a yellow highlight means that the patient currently does not 

receive that drug but reference patients typically do. This is exactly how we envision an 

effective big-data driven clinical decision support system: a non-intrusive additional 

information point that leaves the physician in a better place to make the best possible 

decision for the patient.

FIGURE 12: 

Proof-of-concept of a medication advice EHR add-on using the fingerprint model

14
 DEFENCE-II study, the Netherlands



32

Discovery analyses in detailed oncology databases

While the fingerprint model is very fast and is therefore particularly suited for on-the-

fly analyses, it does not have to be used exclusively in such contexts. It can also deal 

very well with very large quantities of data points, and with situations where clinical 

knowledge does not yet exist: i.e., for what could be deemed “discovery analyses”. It 

could, for example, be used to analyze large regional oncology databases such as the 

Dutch DICA
15

 databases. Fingerprints could incorporate detailed tumor characteristics 

(such as Breslow thickness for melanoma), and the model could be used to identify 

fingerprints of patients that, for example, respond particularly well to specific kinds 

of chemotherapy. Researchers could then analyze this identified subgroup of patients 

to identify clinically relevant hypotheses for further study. As producers of medical 

technologies (devices and consumables) increasingly focus on value based healthcare, 

we see a role for them as a catalyst or champion in taking our model forward. 

There are of course many more conceivable examples where the fingerprint model 

could be exceedingly useful.

Macro level insights

The previous paragraph is about softly ‘nudging’ or ‘guiding’ decision making for 

doctors. It acts on a micro level: it aids decision making on a patient basis at the point 

of care. However, we can also take a more macro point of view. By not focusing on one 

single decision but a string of multiple decisions over time - the algorithm gets a whole 

new dimension: it allows us to see patterns over groups of similar patients and over 

time. In this way, the model may become an input tool for faculty discussion meetings: 

it can for instance signal variation between young/experienced clinicians, and between 

various educational backgrounds (different countries, different universities, etc.). And it 

can be highly valuable to preselect areas where practitioners can learn from each other 

by signaling between doctors. Three manifestations of this application are outlined 

below.

Validation and optimization of existing evidence 

Most of the clinical evidence is based on so called randomized controlled trials (RCT). 

RCT method is important to ensure validity of claims but by the same design it limits 

the applicability of the claim. The problem lies in the ‘controlled’ part of RCT: criteria 

15
 Dutch Institute for Clinical Auditing
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for admission to an RCT are very strict in order to allow for statistical inferences about 

outcomes. This has the advantage that with quite low numbers of patients, researchers 

can often already make claims about, for example, the effectiveness of a new therapy. 

The drawback is that these criteria make the reference group so narrow that it is 

almost impossible to have a ‘real life’ patient match exactly all of the criteria of an RCT. 

Therefore, it opens the possibility that observed effects in RCT are not fully replicated 

in the field.

Take, for instance, the study that compares cream therapy of a basal cell carcinoma 

against the current best practice of photodynamic therapy and against surgical 

excision (Roozeboom
16

, 2016). The study concludes that in many cases, cream therapy is 

preferable to photodynamic therapy. 

However, the criteria are strict: only patients above age 60 are included in one of the 

subgroups; only carcinomas that are superficial are included; only patients from the 

south of The Netherlands were included (mostly Caucasian); patients were only included 

from 2008 to 2010; and all tumors not in the head / neck area were being treated as one 

group. Furthermore, there were very specific choices about the frequency and intensity 

of the treatments, and the way diagnoses were determined was also very specific. 

These types of restrictions are quite common and necessary to design a well-defined 

trial. But the implication for practice is very discouraging: almost no patients meet the 

criteria used in the RCT exactly. What if there’s a patient who has an almost-but-not-

quite superficial basal cell carcinoma on the shoulder, is 59 years old, has Hindustani 

background and also suffers from psoriasis? While the RCT is conclusive about the 

highly particular patient group it studies, it tells us nothing directly about this individual 

patient. Designing and running RCTs for all kinds of segments is prohibitively expensive, 

even the current restricted trial regime is hardly cost sustainable. Finding ways of 

relaxing the assumptions and criteria of RCTs would be an interesting proposition.  

The fingerprint model with similarity scores can help improve study designs to do exactly 

this: make study outcomes more generally applicable, albeit at the small extra expense 

of less strict inference. This disadvantage can be solved by increasing the number of 

patients, and possibly also by advanced statistical procedures such as bootstrapping. 

The way a similarity score can substitute conventional criteria in RCT is quite simple 

from a design perspective. 

16
 Roozeboom et al., Three-Year Follow-Up Results of Photodynamic Therapy vs. Imiquimod vs. Fluorouracil for Treatment of Superficial Basal Cell Carcinoma: A Single-Blind, Noninferiority, Randomized Controlled 

Trial. J Invest Dermatol. 2016 Aug; 136(8): 1568-1574
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First, one determines exclusion criteria (for example, some diagnoses or age groups 

may be excluded). Second, one determines the ‘model patient’ and cut-off value for 

similarity score with the model patient (for example, >0.95 similarity score is required). 

Third, one computes similarity scores for patients to be included in the study. When 

interpreting the study outcomes, an additional robustness check might be performed 

for patients that are outlier in one or more dimensions. 

Continuously adaptive clinical trials 

There is another way to learn from the outcomes and influences of the algorithm. 

In healthcare, substantial time series and panel data are generated and captured in 

various databases. These data contain information about patient characteristics, chosen 

treatments and quality outcomes. These extensive data points enable researchers to 

adopt new information earlier and inflict less damage to test subjects that unnecessarily 

receive inferior treatments.

This information can be used to alter the way clinical trials are executed entirely. 

As mentioned before, the issue with RCTs is that they are quite inert and inflexible: 

there is no learning in the process. One example is the story of ECMO (Extracorporeal 

Membrane Oxygenation), a technique to provide oxygen to the body for persons whose 

heart and lungs are incapable to do so. When this technique was new, a series of RCT’s 

were performed in different locations and in slightly varying populations. In total 39 

newborns deceased in five different experiments and studies, because they did not 

receive ECMO. The success rate for ECMO in those studies was near 100%, also for the 

earlier ones.

There is a branch of clinical trials that allows for fast learning. It relies on the following 

premise: as long as the distribution of potential outcomes of a new treatment includes 

outcomes that are better than the outcomes of the current standard of care, the new 

treatment should be chosen. If a treatment has never been administered, there is for 

instance a 50% chance that the new treatment is better, and a 50% chance that it is 

worse than the current treatment. Of course, a 50% chance that it is better is quite 

significant, so the premise implies that we should try the new treatment. Once we have 

tried the treatment, we have more information on the actual distribution of outcomes, 

but the premise still holds: choose the new treatment as long as there is a significant 

chance that it might be better. 
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Eventually, either the distribution of outcomes is clearly in favor of the new treatment, 

and we should reject the old standard of care, or the new treatment is clearly inferior 

and we should never administer it again.

For example: if 5 newborns were treated with ECMO and 5 without. Of those with 

ECMO, 4 survived. Of those without ECMO, 1 survived. The numbers aren’t sufficient 

for statistically robust results. However, there is some information in the results that 

researchers can leverage on - the premise would clearly imply that the next patient 

should receive ECMO because it is significantly better than the standard of care. This 

approach, rather than the repeated RCT’s, could have saved many lives.

This type of trial, which can be grouped under the evolving concept of the “adaptive 

trial”
17

 and which me may therefore dub “continuously adaptive trial”, essentially 

converts everyday clinical practice to a clinical trial. 

It is particularly suited for measuring the effect of minor clinical decisions that are 

normally not subjected to clinical trials, such as alterations of the salt level in hospital 

catering, or the choice between several different statins for treating high cholesterol.

Where does the fingerprint model come into action? The fingerprint model can be used 

at any time during such continuously adaptive trials to observe and analyze effects. 

Rather than asking “what is the distribution of outcomes for this treatment?” it allows 

us to ask “what is the distribution of outcomes for this treatment in highly similar 

patients?”. For any outcome measure, there may be variables that greatly influence 

success rate but that are as of yet unknown - whether it be a specific age group, 

anatomical differences of the heart or comorbidity, etc.

By enabling fast, on-the-fly analyses of the entire EHR database and inferring 

conclusions on outcome distributions for highly similar patients, our model allows 

hospitals to continuously improve the quality of care for all patients. Essentially, it 

allows for the conversion of “continuously adaptive trials” into “continuously controlled 

adaptive trials”.

Data mining for new patterns

Analogous to using similarity scores in new study designs, the algorithm also lends 

itself to retrospective data analysis. For example, once a large data set - such as an EHR 

-  is obtained, researchers can compute similarity scores for all pairs of patients or for 

all patients against a ‘model patient’ they have in mind. 

17 
For an excellent background on this topic, please refer to: Bhatt et al., Adaptive Designs for Clinical Trials. N Engl J Med. 2016 Jul; 375(1): 65-74
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Then, researchers can test their hypotheses in this data set. For example, testing 

treatment A against treatment B for a specific diagnosis. Of course, pure randomness 

is not possible by design. 

By only comparing patients with very high similarity scores, a very large degree of 

randomness could be engineered. For example, consider taking a patient from group 

A (who received treatment A), that patient can be matched with the best matching 

patient from group B by calculating and ranking all similarity scores from group B with 

the specific group A patient. This process can be repeated until no more matches can be 

made above a predetermined threshold similarity score. 

Regression analysis would be a natural alternative that comes to mind. This need not 

be a substitute for similarity scores. On the contrary, similarity scores may complement 

regression analysis. For example, by excluding highly dissimilar patients before starting 

the regression analysis. 

Management information

As well as providing clinicians and researchers with valuable new insights, the model 

can also provide managers, administrative staff and even patients with previously 

unavailable insights. Below, we outline three avenues our model can generate new 

perceptions.

Improving risk equalization schemes used by healthcare insurance companies in 

NL 

In The Netherlands, the health insurance system is strictly regulated. One important 

feature is that it is obligatory for inhabitants. Another feature is that insurance 

companies are obliged to accept any new participant. Of course, this results in different 

risk profiles of insurance providers, since they are active in different parts of the 

country and have differing market shares for age strata and social status strata. The 

government has a system in place to correct for these differences in risk. This scheme 

works quite well for population as a whole. But for specific sub segments, it works but 

moderately, and for individual patients, it has hardly any explanatory power at all. 
18

18
 See, for example: WOR 748 - Onderzoek Risicoverevening 2016: Overall Toets. Table 2.35 (page 69). Instituut Beleid en Management Gezondheidszorg. 
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The fingerprint model can help predict individual health care costs in the following 

novel way. First, it can match the insured for whom you want to predict the cost of care 

with all other highly similar insured (based on the similarity score) - without requiring 

any up front knowledge of what particular characteristics matter the most. Then, it 

can take the retrospective median or average of actual cost of care of the generated 

reference set. Of course, this requires a fairly large dataset. However, complete data 

sets of the entire Dutch population that would allow for such analyses have been 

meticulously collated and are readily available. 

Patient in charge

Patients are becoming increasingly informed about the goods and services they consume 

and with this shift the patients’ expectations grow further. For example, airlines have 

mobile phone apps that show the products, times and delays. They even offer optional 

customized extras such as extra leg room or a meal to order. Equivalently, Amazon has 

an app that provides all past and future purchases, provides a wish-list with its own 

suggestions, and keeps track of delivery information. Consumer interaction possibilities 

and uptake is continuously on the rise. Hospitals and healthcare in contrast seem 

to be caught in a pre-historic time warp. The records are mostly kept in paper form, 

appointments are made by telephone and confirmed by traditional mail, if at all. And 

patients are hardly informed about what procedures they can expect, at which location 

and at which time. 

Our model obviously can’t change that hospitals are relatively slow in their 

transformation to the digital age. 

However, it can help hospitals to give patients an ‘average’ prediction about what care 

activities they can expect and what the involved costs will be.

This can be done by creating an ‘expected care path’. A care path in this case is a set 

of care activities that a given patient receives, for example: the different lab requests, 

MRIs, surgery and a stay in the hospital. Based on the set of historical care paths, the 

model can calculate the expected care path by taking the modal care path from the set 

of patients who have the highest similarity score.
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Predicting production volume and revenue for hospitals and insurance companies 

Hospitals and their payors - the insurance companies - have prediction models for their 

cost and turnover. Due to the nature of the payment system in The Netherlands, these 

models tend to have quite a big time lag. Hospitals in the Netherlands are paid for 

‘packages’ of care that frequently go together. The definite ‘package’ for which a hospital 

will be reimbursed by the insurer will only be known after the completion date for the 

entire package, which can be many months after the first diagnosis. For example, when 

a patient visits the dermatology outpatient clinic with certain symptoms, there are 

very often many different possible packages as outcomes. And even as the treatment 

advances, there is much uncertainty of the eventual package. An extra MRI can change 

the package to a more expensive one. 

Of course, there are prediction models to handle such uncertainties. However, they 

infer production based on historical patterns of the consumed aggregate care, and not 

on a per patient basis. Our model can predict expected care (following the analogy of 

‘patient in charge’) and hence expected cost for an individual patient.

19 
Berner, Clinical Decision Support Systems: State of the Art. Jun 2009, Agency for Healthcare Research and Quality (AHRQ) Publication No. 09-0069-EF
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Appendix - background and overview of 
clinical decision support 

 “Clinical decision support (CDS) systems provide clinicians, staff, patients, 

and other individuals with knowledge and person-specific information, 

intelligently filtered and presented at appropriate times, to enhance health 

and health care”
19 

While this definition is concise and captures the purpose of a CDS, it doesn’t mention 

how a CDS works under the bonnet. Clinical decision support is the brains behind any 

system that healthcare professionals use in care delivery. Clinical decision systems 

are an evolution on the development of electronic health records. EHRs, e-prescribing 

systems, computerized physician order entry, and medication reconciliation systems all 

are strengthened by some form of clinical decision support. CDS can help physicians 

reach proper diagnoses, ask the right questions, and perform appropriate tests on the 

front end of the decision-making process - preventing errors of omission - as well as 

stop errors of commission on the back end, during treatment and procedures.

However, in reality a CDS is a multifaceted animal that takes on many different shapes. 

Hence, this paper provides a more practical approach to explaining CDS. Basically, any 

analysis can be structured in terms of its input, its computations and its output. This 

holds true for CDS as well, so we’ll explain the mechanisms of a CDS along these lines. 

Then, the most important CDS are compared along these elements. 

Overview of elements that differentiate CDS

Input - CDS use different kinds of input. First of all, they use patient variables: 

demographic properties such as age and gender, clinical variables such as complaints 

and pain and biomarkers such as potassium or X-ray results. Secondly, they use 

variables on care activities performed on the patient, such as the amount of OPD visits, 

medication usage or type of surgery performed. Thirdly
20

, the CDS may use outcome 

variables, such as pain score. Lastly, it may use the use clinical guidelines on diagnosis 

and treatment, from national guidelines to hospital specific guidelines. 

Calculation - The way the CDS use their input to calculate varies tremendously. They all 

rely on a combination of algorithms that attempt to identify the best possible diagnosis 

or treatment. The simplest form is a straightforward correlation analysis. The most 

complex variants entail a combination of optimization algorithms (such as k-means and 

20
 The information in this chapter is partly based on several articles from the InformationWeek website
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J86 step-wise regression). The table below provides some examples of those algorithms 

to give a better idea. 

Output - There are many distinguishing elements that typify the output of a CDS. The 

most important one is the point in the care chain that the CDS applies to. There are 

two categories. On the one hand, there are CDS that help in diagnosing a patient. As 

a doctor enters more parameters, the CDS calculates the most likely disease and asks 

relevant additional variables that increase the precision of the prediction. 

On the other hand, there are CDS that help determining the best treatment for the 

patient. For example: is it - given all the specific data points - better to treat a patient 

with medication or to perform surgery?

Apart from the point in the care path (diagnosis or treatment), there is a number 

of other, though less discriminating, properties: the type of information it displays, 

the level of detail that it gives, the point in the decision making process it provides 

information and the person to whom the CDS reports. 

The type of information - does the CDS give information about variation between 

doctor’s choices? Does it also give information about the relation between the choice 

and health outcomes? Does the CDS specify exactly which route a doctor could follow, 

or does it provide high level information? Is the information descriptive or normative, 

ie. does the CDS steer in a certain direction? 

The user of the program - does the CDS report to employees involved in patient care 

such as doctors, nurses or other healthcare workers? Or does the CDS target managers 

or directors of healthcare institutions? Of course a combination of these is also possible: 

a CDS could guide doctors at the point of care and also provide overall business 

intelligence to managers.

The point in the decision making process - does the CDS provide information before 

or after the decision takes place. There are CDS that give live feedback, ie. they provide 

information that helps make decisions at the point of care. On the other hand, there 

are CDS that enter the process ex post. One would think that this is less valuable than 

on-the-spot feedback. However, ex post feedback allows for analysis of decision making 

and arranges for additional insights in the decision making process.
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